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Abstract

An expert system is a computer program that performs at the level of a human expert
in a complex but narrow field. Two types of expert systems which involve statistical expertise
are statistical consulting programs and programs which find patterns in databases. Consulting
programs can now be built quickly using programming tools. Twosamp, a consultant for
advising on the analysis of univariate two-sample problems, was constructed in less than a
week using one such tool, EMYCIN. Systems like Twosamp cannot model the initial stages
of a consulting session, but can provide expert assistance once a class of models has been
selected. Consultants and pattern-finders can assist statisticians in building models, generating
hypotheses, and maintaining complex databases. As well, they can serve as laboratories for

experimentation with statistical strategies.

Expert systems also use statistical expertise. Most systems include mechanisms for rea-
soning under uncertainty. Methods under investigation include fuzzy logic, Dempster-Shafer
theory, Bayesian analysis and various ad hoc methods. Learning systems use statistics to infer
inductive rules. As well, statistical reasoning will be used to evaluate the performance of expert

systems.

This work supported by an Office of Naval Research Contract N00014-83-K-0472.



Chapter 1

Introduction

An expert system is a compuier program that performs at the level of a human expert
in a complex but narrow field. To qualify as an expert system, the program must
handle problems in a domain in which expertise is an “art”, that is, no algorithmic
solution to problems exist, but rather, expertise comes from experience and heuristic
reasoning. For example, fitling a curve through a cloud of data by nonparametric
smoothing does not qualify as expert behavior - fitting is described by a well-defined
algorithm. Choosing the most appropriate smoothing technique is expert behavior
— it requires heuristic knowledge about what properties of the data are displayed by
each technique, and which are important for the data set at hand. Recognizing that
the smooth comes from a given parametric family is also expert behavior. Although
in principle, this could be done by searching some set of possible curves, this set is
simply too large to search exhaustively without some guiding heuristics.

Part I of this report deals with expert systems whose domains of expertise include
some statistics. Part II deals with the use of statistics in building and evaluating
expert systems.

Two types of expert systems which involve statistical reasoning are advice-giving
programs and pattern-finding programs. Advice-giving systems have encoded within
them rules for decision making in some domain, and have the goal of solving or
pointing to solutions of a selected set of problems, for example, of diagnosing a disease,
or determining an appropriate statistical analysis. Pattern-finding systems search
through a database for interesting facts, for example, side-effects of drug use, or rules
for reaching certain conclusions.

Advice-giving expert systems involve statistical reascning if they give statistical
advice. (Many advice-giving programs also have devices to handle uncertainty in
the data or vagueness in the rules, but I do not include this aspect in my definition
of statistical reasoning.) Currently, advice-giving systems have been writtea in two
modes. The consultant attempts to use its rules to solve the problem itself, and turns
to the human expert only if it lacks either the data or the rules to continue. Because



the program takes the lead in solving the problem, most consultant programs include
explanation systems that allow the human expert to query the program’s reasoning.
Examples of consultant systems are MYCIN {Buchanan and Shortliffe, 1984), which
provides medical diagnosis and prescribes drugs for bacterial infections and REX
(Pregibon and Gale, 1982) which does an expert job of least-squares linear regression.

The assistant aids the human consultant. The assistant may perform any number
of duties, such as keeping track of the data and techniques available to the human
consultant, keeping track of what has been or should be done, or performing tasks
requested by the consultant. For example, SACON (Buchanan and Shortliffe, 1984),
assists an engineer in running a complex computer package, MARC, which analyzes
structural characteristics of materials, such as stress. REFEREE (Buchanan, Brown
et al, 1984) assists an editor in assessing the quality of a paper describing a clinical
trial. PA (Waters, 1982), the Programmer’s Assistant, constructs computer programs
by interpreting commands like “iterate®, and “maximize”.

Pattern-finding systems search a database to discover relationships. These systems
use statistical techniques such as correlations and discriminants as well as knowledge
about their domain. For example, the RX program, (Blum, 1982), searches a med-
ical database for possible causal relationships, where causation is defined by lagged
correlation. The program then uses medical knowledge to rule out common causes
and clearly spurious correlations. Finally, both statistical and medical knowledge
are used to test the correlation, after controlling for other associated variables. The
Odysseus system (Wilkins et al., 1985), attempts to create diagnostic variables by use
of partitioning techniques in a medical database. No causality is assumed. The pro-
gram attempts to find the symptoms associated with disease states, and thus to add
rules to a diagnostic consultant. The program requires medical knowledge, statistical
knowledge, and knowledge about the structure of plausible rules.

A statistical consulting system is simply a better package. Existing packages
compute accurately. However, they are highly sensitive to minor syntax errors, and
do not provide much guidance in the use of statistical techniques beyond instructions
for entering the data and running the program. They do not guard against even the
most blatant or readily detected misuse of techniques, and often produce reams of
output without much interpretive assistance.

Typically, expert systems have more flexible language handling abilities. This
means the user need not be annoyed so often by simple syntax and spelling errors.

More important, expert systems have heuristic knowledge which can guide the
analysis and assist the interpretation of the results. For example, most linear regres-
sion packages note computational problems, such as singularity of the design matrix,
since the numerical algorithms will fail. Few such packages note even commonly oc-
curring and readily detected problems such as integer-valued response variables or
very small degrees of freedom for error, since these do not interfere with the numer-
ical algorithms. An expert system could have encoded within it guidelines for the



appropriate use of various statistical techniques. An expert regression package, for
example, would draw the user’s attention to violations of the normality assumptions
and warn of problems like overfitting. At a higher level, an expert statistics package
could advise a user who wants to know the ®relationship” between two variables, that
a particular technique is suitable.

Many packages do provide diagnostics and other information automatically. How-
ever, these are often buried within the cutput. The user with little statistical expertise
may not understand the use of these statistics or may not how to proceed if she does
recognize a problem. (Some well-known packages produce statistics for the regres-
sion problem that most expert statisticians are not familiar with.) An expert system
could examine the diagnostics and draw the user’s attention to those with significant
implications for the analysis, such as the existence of a highly influential point. The
essential difference between a package and an expert system is in the phrase “draw the
user’s attention”. The expert system computes, but does not print, all the relevant
statistics. Like the human expert, the expert system interprets these results, and then
advises the user on the appropriate course of action. Current packages rely on the
user to recognise the important diagnostics, and to know how to proceed.

Of course, a statistical expert system need not have a numerical component. For
example, an expert system knowledgeable about experimental design could assist a
client ir planning a study. The important points are that the expert system goes
beyond a textbook by dealing with the problem presented by the user, not with the
abstract case, and goes beyond the package by interpreting aspects of tL: analysis
and bringing the important features to the attention of the user.

An expert system does not have the abilities of a human expert. In narrow range
of expertise, it may well out-perform a human expert due to the superior data retrieval
and computational abilities of the computer. However, the human expert can perform
in a far wider range of problems. She has “world knowledge”, that is a broad range
of knowledge that lies outside her field of expertise. And she learns readily both from
experience and from other experts. To date, coding world knowledge into a program is
not possible. And, although machine learning is an area of current research, programs
do not currently have the understanding and insight of humans. The expert system
has only domain knowledge, and has only a limited ability to extend that knowledge.



Chapter 2

Building an Expert System

The first expert systems were coded by programmers working in areas in which they
had expertise, such as games. However, in fields of specialized knowledge, such as
chemistry and medicine, the programming expertise and domain expertise are gen-
erally held by different individuals. Furthermore, expertise in these areas is often
implicit, embodied in rules of thumb, and transferred, not only by textbook training,
but also by “hands-on” experience. Communication between the domain expert and
the programming expert is a major problem.

One design strategy used to alleviate this problem was to separate the “domain
knowledge” of the system from its “control knowledge® or “inference engine”. The
domain knowledge consists of the facts and heuristics known to the expert. For ex-
ample, the knowledge that a t-test is a test of location is knowledge in the statistical
domain. This knowledge is usually encoded as a series of rules. For example:

“If the data are Gaussian,
and the test is a test of location,
use a t-test.”

The “control knowledge” is the problem solving strategy used by the program. For
example, in symbolic integration, many equivalent answers are possible, and only one
is needed, but in medical diagnosis it is necessary to keep track of all possible diagnoses
of the patient.

There have been two major consequences of this separation of domain knowledge
and inference engine. Firstly, the domain expert, with only a cursory knowledge of the
inference engine, can add to and change the facts and heuristics in the knowledge base.
The second is that the same inference engine can be used within different domains of
expertise if the problem solving strategies can be couched in similar terms. Only a
new knowledge base must be constructed.

Knowledge acquisition systems such as TEREISIS (Buchanan and Shortliffe, 1984),
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and KAS (Hayes-Roth et al., 1983), are programs designed to assist the domain expert
in building a knowledge base. Inference engines and knowledge acquisition systems
have been assembled into tools such as EMYCIN (Van Melle et al., 1984), and KAS
which can, in principal, be used directly by the domain expert to build an expert
system. The expert requires about the same level of programming skills required to
use a statistical package. Whereas building an expert system from scratch is a matter
of years, systems can be built in a matter of months using these tools. For example,
MYCIN (Buchanan and Shortliffe, 1984), a medical diagnosis system took 4 years
to build, whereas my very simple system, Twosamp, was built in less than a week
using EMYCIN, the expert system building tool derived from MYCIN, and SACON
(Buchanan and Shortliffe, 1984), was built in about 4 months using the same tool.
MYCIN has about 500 rules of domain knowledge, Twosamp has 38, and SACON has
170.

There are several types of inference engines now in use in various expert systems.
EMYCIN assumes that all domain knowledge is encoded in production rules and that
inference is done by backward chaining from the goal. A production rule is an “if-
then” statement, such as

“If the problem is to detect a difference in location,
and if the data are paired,

and if the differences are Gaussian,

then the appropriate procedure is paired t-test”.

Backward chaining means that the inference engine starts from the goal, and seeks
all information needed to attain that goal. In the example above, the goal is to
determine the appropriate procedure to use. In order to determine this, it is necessary
to determine the type of problem, if the data are paired, and if the differences are
Gaussian; these become the new .goals of the system. EMYCIN allows for multiple
goals, and multiple conclusions.

EMYCIN also allows for uncertainty in the user’s knowledge of the parameters,
and in the conclusions of the rules. These are dealt with using “certainty” factors, an
ad hoc method, which is explained in part II of this report. I did not use certainty
factors in building Twosamp.



Chapter 3

Building Twosamp

Twosamp is a statistical assistant system, for advising on the appropriate analysis in
the univariate two-sample location problem. The system was designed as a student
project in a one semester reading course. It took about 8 hours to design (on paper)
a decision tree for this problem, and another 30 hours to learn EMYCIN and enter
the rules. The primary path of the decision tree is displayed in Figure 1. A small
set of rules, as they are interpreted by EMYCIN, is displayed in Figure 2. Part of a
Twosamp run is displayed in Figure 3.

Which primary node of the tree is selected is determined by three variables, the
data type, the design, and the model. Five data types are considered, dichotomous,
categorical, count, continuous and ranked. (If the study involves survival or lifetime
data the client is advised to see a statistician. This was done only to keep the problem
small, since selecting an appropriate technique in survival analysis involves another
large decision subtree.) Designs considered were matched and unmatched data. The
two models depend on whether the grouping is the independent or dependent vari-
able. If the grouping is the independent variable, the problem is to determine if there
is a difference in distribution of the measured variable between the two groups. If
the grouping is the dependent variable, the problem is to determine how group mem-
bership depends on the measured variable (that is, logistic regression or a related
model.)

The ordering of the primary nodes is not arbitrary. If is forced by the logic
of EMYCIN. EMYCIN allows only backwards chaining and conclusions reached by
EMYCIN are irrevocable. For example, Twosamp asks questions about the differences
between pairs, only if it has determined that a paired t-test may be an appropriate
technique, that is, only under the node

CONTINUOUS=true

MODEL=difference-in-mean

N-MATCHED=1



Figure 1
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Figure 1 cont.
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Figure 1 cont.
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Figure 1 cont.
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Figure 1 cont.

——»DATA TYPE=continuous (cont.)

yes

unmatched

l

Gaussian

yes

v

no

no

equal variances —P Welch's t-test

yes

t-test

no

no

yes

trimmed t-test

$ long tails ——p take ranks

set DATA TYPE=ranked

v

7e



Figure 1 cont.
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In statistics, attributes of the data may change as the analysis proceeds. For example,
after taking logarithms, data that were originally counts may be treated as continuous,
or data that were skewed may be considered Gaussian. Since EMYCIN does not allow
re-evaluation of problem parameters, decision nodes must appear in an appropriate
order, and dummy variables are occasionally needed.

Rules are entered using EMYCIN’s knowledge acquisition routine. Rules may be
entered in a simplified “natural language”, more tersely in “mathematical language”,
or in Lisp. Examples of all three fypes of entry are displayed in Rule 007 in Figure 2.
EMYCIN prompts for definitions of any new parameters encountered, and translates
the rules into all three modes, using simple templates. The templates for converting
from mathematical language to Lisp are provided by EMYCIN. The templates for
converting to natural language are provided by the human expert. For example, the
template for the variable name “ADVICE” is “one of the first things you should do”
and the template for its value “DESIGN” is “create a design matrix”. EMYCIN
uses grammatical rules to create English-like sentences from the templates. Spelling
correction is done automatically for known parameters, and other corrections may be
done via the line editor. EMYCIN queries the user if rules give conflicting advice.

Rules fire when their premises are true. The first rule to be attempted is the goal
rule. The action of the goal rule is to end the consulting session. The goal rule of
Twosamp is Rule 038, displayed in Figure 2. Since the program attempts to resolve
the truth of the premises of the rule, it will first attempt to determine if the problem
is a univariate two-sample problem, and if it is, to find the appropriate analysis. The
attempt to resolve the premises of the goal rule controls the firing of the other rules.

A consulting session is recorded in Figure 3. Notice that EMYCIN provides
spelling correction and an explanation facility (the “WHY” command.) Due to an
EMYCIN bug, the program has not attempted to resolve the first premise of the goal
command, that is, has not first checked to ensure that this is a univariate two-sample
problem. The program can give two levels of advice. The “solution” is a single piece
of advice, that signals the goal rule to finish the session. If the solution needs to
be modified, for example, by reminding the user to create a design matrix, another
variable, “initial advice” is also printed. This problem displays a common piece of ad-
vice “See a statistician.” This advice is basically a place-holder, indicating problems
that do not have standard solutions, or nodes in the decision tree such as “DATA-
TYPE=survival” which are not currently handled by the program, but which could
be added later.

My goal was to design a system that handled a consulting session with a user
who was somewhat conversant with statistical language, but not knowledgeable in
the full range of tools available to handle the two sample problem. The proliferation
of rules was limited by referring the client to a human statistician if the problem had
no standard solution, or more properly belongs to the realm of survival analysis. As
a result, although the problem domain is small, 38 rules were needed.



Figure 2
RULEGOQO7

[This rule is tried in order to find out about the first thing you
should do or the solution]

If: 1) The problem is predictlon, and
2) The type of data is the data are unordered categories
Then: 1) It is definite (1.0) that the following is one of the
first thing you should do: create a design matrilx,
2) It is definite (1.0) that the following is one of the
first thing you should do: use loglstic regression, and
3) It is definite (1.0) that the following is the solution:
use multiple comparisons if the leglstic regression was
significant

Premise: ($AND (PREDICTION=PREDICTION) (DATA-TYPE=CATEGCRICAL))
Action: ($AND (ADVICE=DESIGN) (ADVICE=LOGISTIC) (FINAL-ADVICE=MULTIPLE))

PREMISE: ($SAND (SAME CNTXT PREDICTION PREDICTION)
(SAME CNTXT DATA-TYPE CATEGORICAL))
ACTION: (DO-ALL (CONCLUDETEXT CNTXT ADVICE (TEXT DESIGN)
TALLY 1000)
(CONCLUDETEXT CNTXT ADVICE (TEXT LOGISTIC)
TALLY 1000)
(CONCLUDETEXT CNTXT FINAL-ADVICE (TEXT MULTIPLE)
TALLY 1000))

RULEO38

[This rule is tried in order to find out about whether the analysis
is finished]

If: 1) This is not a two-sample one varlable problem, or
2) The solution is known
Then: 1) It is definite (1.0) that the analysis 1s finished,
2) Display the first thing you should do, and
3) Display the solution

Premise: ($AND (SOR (INAPPROPRIATE) (KNOWN CNTXT FINAL-ADVICE))
Action: (DO-ALL (FINISHED) (PRINTCONCLUSIONS ADVICE)
(PRINTCONCLUSIONS FINAL-ADVICE))

PREMISE: ($AND ($OR (SAME CNTXT INAPPROPRIATE)
(KNOWN CNTXT FINAL-ADVICE)))
ACTION: (DO-ALL (CONCLUDE CNTXT FINISHED YES TALLY 1000)
(PRINTCONCLUSIONS CNTXT ADVICE T)
(PRINTCONCLUSIONS CNTXT FINAL-ADVICE T))
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Figure 3a

———————— PROBLEM-1————=—==

1) Are the data dichotomous categorical, ordered, ranks, counts, or
continuous?

** RANKS

2) Do you want to determine if there 1s a significant difference in the
distribution in the two groups (difference-in-mean) or predict group
membership?

** DIFF

=DIFFERENCE_IN_MEAN

3) Are the data in the first group matched 1n any way to the data in the
second group? '

xx Y

The solution is as follows:
See a statistician.
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Figure 3b

-------- PROBLEM-2-—————-~

1) Are the data dichotomous categorical, ordered, ranks, counts, or
continuous?

** COUNTS

2) Do you want to determine 1f there is a significant difference in the
distribution in the two groups (difference_in_mean) or predict group - -
membership?

** DIFFERENCE_IN_MEAN

3) What is the smallest count in the data?

*x WHY

[i.e. WHY is it important to determine the smallest count?]

[1.0] This will aid in determining whether the data are continuous.
It has already been established that
[1.1] the type of data 1s the data are counts
Therefore, 1if
[1.2] the smallest count is greater than or equal to S
then
it is definite (1.0) that the data are continuous
[ALSO:
it is definite (1.0) that the data have been tested to determine if
they are Gausslan
it is definite (1.0) that the data are Gaussian
Take the logarithm of the data.]
[RULED13]

[back to question 3...]
xx 77

Take the logarithm of the data.

4) Are the data in the first group matched in any way to the data in the
second group?

t*Y

5) How many experimental units in group two are matched to a single unit
in group one?

**1

Take the differences between pairs. From this point onwards we refer only to
the differences.

The solution is as follows:
Do a one-sample t-test on the differences.
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Twosamp does not access statistical package. That is, it gives advice about which
technique to use, but does not do any analysis for the client. This makes Twosamp
very different from programs like REX in which the consultant carries out the entire
analysis. Twosamp does not have much knowledge about the data and must always
query the client. In this mode, Twosamp is simply a summary of its decision tree.

Even this small system could be quite useful, however, if attached to a statistical
package. This could be done without major revision to the current knowledge base,
although new rules would have to be added to interpret the output of the package.
Passing the information back and forth from the package to the system would be a
tedious programming task. Current systems which access statistical packages, such
as RX (Blum, 1982), and REX (Pregibon and Gale, 1982), handle this by allowing
some rules to create calls to the associated package and then scanning the output for
relevant values.

Although Twosamp does an adequate job of the actual data analysis task, it does
not model a consulting session. A statistical consultant asks general questions of
the type “Where does this data come from?® “How did you collect it?” and so on.
Twosamp has no general world knowledge, nor does it understand natural language
well. Twosamp enters the consulting session after the human consultant,
through dialogue with the client, has narrowed the problem to selecting
within a small set of possible models (techniques).



Chapter 4

The Consnultant versus the
Assistant

Since the idea of building a statistical consultant expert system was suggested by J.
Chambers at the 1981 Interface of Computer Science and Statistics Interface (Cham-
bers, 1981), there has been considerable debate in the statistical community about the
role of the program as a consultant. While some statisticians feel that a consultant
system would assist users who currently use statistical packages without consulting a
stalistical expert, others worry about putting yet a more powerful tool in the hands
of the untrained user.

The argument against the ccnsultant program, is that the consultant, due to lack
of real world knowledge, and of natural language recognition, cannot pursue vague
questions of the type “Where did this data come from?” or *What are you trying to
find out?” These are the questions that are often the crux of a session with a human
consultant. That is, the task of the consultant is not just to suggest and carry out a
statistical analysis of the client’s data, but to clarify the premises, actions and goals
of the client.

It is useful, in thinking about this question to note that experts in other fields are
also uncomfortable about using consulting systems. Comments like “The computer
cannot understand how sick this patient really is” (how complex this data set really is)
or “Every patient (data set) is unique® were made by assessors of MYCIN (Buchanan
and Shortliffe, 1984). Yet in blind assessments, the MYCIN compared well with
human experts. Of course, these assessments are done only using cases for which the
use of the program is already indicated.

There are two major differences between consultation systems for statistics and
for those in other fields. In the first place, in a field such as chemistry or medicine,
the computer consultant has knowledge about the problem domain. The statistical
consultant, on the other hand, has knowledge about the statistics domain, not about
the problem demain. Secondly, medical consulting systems are designed to be used by
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doctors, not by their patients. The consulting system provides expert advice, when
used by a general practitioner who has already recognized a class of possible disease
states. However, given the current use of statistics packages by clients with only
cursory knowledge of statistics, the builders of statistical consultation systems must
realistically expect that these systems will be used by clients with little statistical
expertise. ) :

Figure 4 is a simple model of a statistical consulting session. The initial stages of
the session consist of dialogue between the consultant and the client. The purposes
of this dialogue are to reach a common vocabulary for discussion of the problem, to
determine the characteristics of the available data, to determine the goals of the client,
and, finally, to determine a class of models (techniques) which may be appropriate.
The second stage of the session is the analysis loop. At this stage, the data are
examined in detail. Summaries such as graphic displays, tables, and approximating
equations may be used. Interesting features of the data are noted. Statistical tests
are performed. The analysis stage is iterative. A careful analysis usually requires
several cycles through the analysis loop. In each cycle, the data analyst, who may
be the statistician or the client, examines interesting features, such as outliers, and
associations between variables, and adjusts the model. There may also be periodic
returns to the dialogue step. The final step is writing the report on the statistical
aspects of the problem.

Statistical consulting systems which can handle the dialogue stage of the consulting
session could be built for very limited problem domains. For example, a system
which could design and analyze clinical trials in a small medical domain may be
possible, since a few hundred rules could probably handle most of necessary knowledge.
However, the same system would not be able to handle similar statistical techniques in
another domain, because the vocabulary of the problem and the accompanying domain
knowledge would differ. It is not currently feasible to build statistical consulting
systems which can handle the dialogue stage of the consulting session for a general
consultant.

It is more realistic to suppose that the statistical consulting system will enter the
consulting session at the second stage, during the analysis loop. With access to a
statistical package, the system can handle the iterations of the analysis loop, once a
class of models have been identified. The system can also keep track of what it has
done, and write a report.

In this sense, statistical consulting systems have the same limitations as medical
consulting systems. Medical systems do not model the role of the general practitioner.
Such a system would require too much world knowledge. Medical computer consul-
tants work well in a very limited domain. The patient is already known to have a
disease in a given (small) class (for example, meningitis) and the remaining task is
simply to narrow the diagnosis further in order to prescribe appropriate treatment.
Similarly, the computer statistical consultant can do an expert job of the analysis
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Figure 4
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once a class of techniques has been selected by the human consultant.

Many of the arguments between opponents and proponents of the use of expert
systems for statistics furn on this distinction. The opponents have focused on the dia-
logue stage of the consulting session. At the current state of the art, expert consulting
systems do not handle this well. The proponents of expert systems have focused on
providing expert analysis once the human expert has formulated a class of models.
Programs such as REX (Pregibon and Gale, 1982), demonstrate that this is a feasible
task.

Statistical consultation systems can be useful for the applied statistician. Even a
trained statistician cannot have expertise in all the techniques she knows. It is far
easier to identify a class of models which suit the problem, than to do an expert job of
finding a specific model to fit a particular data set. Applied statisticians must often
provide consulting support over a wide range of problem areas. Expert systems could
provide them with much needed support, especially for new techniques.

Expert systems will be useful pedagogically. Just as the development of statistical
packages has freed us from teaching students the details of the numerical algorithms,
the development of expert systems will free us from teaching non-technical students
the technical details of a good analysis. What must be taught are the uses and
interpretation of statistical techniques.

For the time being, at least, statistical consulting programs, like statistical pack-
ages, are an asset for statistician, but carry the potential for abuse by the non-
statistician. Statistical packages reduced programming errors but did not prevent
users from running an inappropriate analysis. Statistical expert systems, too, cannot
prevent users from doing an inappropriate analysis, but they do ensure that the se-
lected analysis is done well. Of course, if an inappropriate analysis is selected, the
quality of the analysis is irrelevant. However, this is a problem which already exists.
At least for that level of client with some statistical knowledge, the consulting system
can provide guidance, and can reduce some of the manual labor of performing the
analysis loop.
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Chapter 5

Statistical Expertise and Expert
Statisticians

Building an expert consulting system is like writing a textbook or a manual for a sta-
tistical package. It codifies and explicates existing statistical techniques and strate-
gies. New techniques arise only minimally, when numerical summaries are required
for visual displays, or gaps are discovered in current practise.

The development of tools like EMYCIN may, however, change the manner in
which statistical software is developed. Commercial packages will undoubtedly begin
to distribute expert systems with their routines, and such systems may even replace
manuals. (The use of the term “expert system” in this context is unfortunate, since
it seems to imply more than such systems will actually deliver.) When expert system
building tools like EMYCIN interface more readily with computational programs, it
will be practical and atfractive for new methods to be released by statistical investi-
gators as expert systems, rather than as statistical algorithms.

Pattern-finding expert systems, such as RX and Odysseus, that try to find new
knowledge in a data set have been somewhat neglected by statisticians interested
in expert systems. These systems require both domain knowledge and statistical
knowledge. They provide interesting laboratories for testing our ideas of the meaning
of statistical ideas like causation. Besides, the data sets used in these systems are
usually rich, and beg new analysis techniques.

Whatever our feelings as statisticians about the role of expert systems, we cannot
afford to ignore them. Expert systems involving statistical expertise will be built,
because of the utilify to the builders, if not to the potential client. With the explosion
of personal computing, writing statistical software has become a lucrative business.
Statistical software wrapped in an expert system is that much more marketable. For
example, both EMYCIN and BMDP (BMDP, 1983), are now marketed for use on
(different) personal computers, and a system which consults on any given BMDP rou-
tine could easily be written in a few days. Pattern-finding systems are still at a more
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primitive stage — they must be built from scratch — but are attractive research topics
for students in Artificial Intelligence as well being of obvious interest for institutions
handling large databases. The same computer that collects patient records for a med-
ical project could, in its “spare time” search for interesting relationships in the data
and generate new hypotheses for research.
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